Definition (Product of a Matrix and a Vector)

If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and if \mathbf{x} is in \mathbb{R}^n , then the **product of** A **and** \mathbf{x} , denoted by Ax, is the linear combination of the columns of A using the corresponding entries in x as weights; that is, Eq: $\begin{bmatrix} 2\\ -3\\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix}$ is

$$A \mathbf{x} = [\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n] egin{bmatrix} x_1 \ dots \ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n$$

not defined.

 $X_{L} \overrightarrow{a}$

Remark: $A\mathbf{x}$ is defined only if the number of columns of A equals the number of entries in \mathbf{x} **Example 1. (a)** Use the definition to compute

$$\begin{bmatrix} 6 & 5 \\ -4 & -3 \\ 7 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = x_1 \overrightarrow{a}_1 + x_2 \overrightarrow{a}_2$$

= $x_1 \overrightarrow{a}_1 + x_2 \overrightarrow{a}_2$
= $x_1 \overrightarrow{a}_1 + x_2 \overrightarrow{a}_2$
= $x_1 \overrightarrow{a}_1 + x_2 \overrightarrow{a}_2$

Row-Vector Rule for Computing $A\mathbf{x}$

If the product $A\mathbf{x}$ is defined, then the *i* th entry in $A\mathbf{x}$ is the sum of the products of corresponding entries from row i of A and from the vector \mathbf{x} .

Example 1. (b) Use the Row-Vector Rule to compute the product in part (a).

$$A\vec{x} = \begin{pmatrix} 6 & 5 \\ -4 & -3 \\ 7 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -3 \\ -3 \end{pmatrix} = \begin{pmatrix} 6 \times 1 + 5 \times (-3) \\ (-4) \times (+(-3) \times (-3) \\ 7 \times (+6 \times (-3)) \end{pmatrix} = \begin{pmatrix} -9 \\ 5 \\ -11 \\ -11 \end{pmatrix}$$

Definition (Matrix Equation)

An equation in the form of $A\mathbf{x} = \mathbf{b}$ is called a **matrix equation**.

Theorem 3 (Equivalence Between Matrix Equation and Vector Equation)

If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, and if \mathbf{b} is in \mathbb{R}^m , the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

 $[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}]$

Example 2. Write the system first as a vector equation and then as a matrix equation.

$$8x_{1} - x_{2} = 4$$

$$5x_{1} + 4x_{2} = 1$$

$$x_{1} - 3x_{2} = 2$$

$$AUS: Vector eqn:$$

$$x_{1} \begin{pmatrix} 8 \\ 5 \\ 1 \end{pmatrix} + x_{2} \begin{pmatrix} -1 \\ -1 \\ -3 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$$

$$Matrix eqn:$$

$$\begin{pmatrix} 8 & -1 \\ 5 & 4 \\ 1 & -3 \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$$

Existence of Solutions

The definition of $A\mathbf{x}$ leads directly to the following useful fact:

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Theorem 4

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

- 1. For each \mathbf{b} in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- 2. Each \mathbf{b} in \mathbb{R}^m is a linear combination of the columns of A.
- 3. The columns of A span \mathbb{R}^m .
- 4. A has a pivot position in every row.

Warning: Theorem 4 is about a coefficient matrix, not an augmented matrix. If an augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ may or may not be consistent.

Eq:
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, the augmented matrix $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. has a pivot position in every row. But the system has no solution.
Example 3. Let $\mathbf{u} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix}$. Is \mathbf{u} in the plane in \mathbb{R}^3 spanned by the columns of A ? (See the figure.) Why or why not?

ANS: The vector to is in the plane spanned by the columns of A if and only if the is a linear combination of the columns of A.

This happens if and only if
$$\underline{Ax} = \overline{u}$$
 has a solution
(See the box above Thm 4).
The corresponding augmented matrix is
 $\begin{bmatrix} 3 & -5 & 0 \\ -2 & 6 & 1 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ -2 & 6 & 1 \\ 3 & -5 & 0 \end{bmatrix}$

Example 4. Let
$$\mathbf{v}_1 = \begin{bmatrix} 0\\0\\-1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0\\-1\\3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2\\-1\\-3 \end{bmatrix}$. Does $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ?

Theorem 4

Let A be an m imes n matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

- 1. For each ${f b}$ in ${\mathbb R}^m$, the equation $A{f x}={f b}$ has a solution.
- 2. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.

3. The columns of A span \mathbb{R}^m . 4. A has a pivot position in every row.

ANS: By Thm 4
Span
$$\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} = \mathbb{R}^3 \iff A = [\vec{v}_1, \vec{v}_2, \vec{v}_3]$$
 has a pivot
position in each row.
Let $A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & -1 & -1 \\ -1 & 3 & -3 \end{bmatrix} \sim \begin{bmatrix} -1 & 3 & -3 \\ 0 & -1 & -1 \\ 0 & 0 & \times^{-1} \end{bmatrix}$
 $\sim \begin{bmatrix} -1 & 3 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Thus A has a pivot position in each row. So span $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} = \mathbb{R}^3$

Properties of the Matrix-Vector Product A**x**

Theorem 5

If A is an m imes n matrix, ${f u}$ and ${f v}$ are vectors in ${\Bbb R}^n$, and c is a scalar, then:

a.
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v};$$

b. $A(c\mathbf{u}) = c(A\mathbf{u}).$

The following three questions are left as exercises. I will provide the complete notes for solving them after the lecture.

Exercise 5. Given A and \mathbf{b} , write the augmented matrix for the linear system that corresponds to the matrix equation $A\mathbf{x} = \mathbf{b}$. Then solve the system and write the solution as a vector.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

ANS: To solve $A\mathbf{x} = \mathbf{b}$, row reduce the augmented matrix $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{bmatrix}$ for the corresponding linear system:

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ -3 & -1 & 2 & 1 \\ 0 & 5 & 3 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 5 & 5 & 1 \\ 0 & 5 & 3 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 5 & 5 & 1 \\ 0 & 0 & -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 5 & 5 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 5 & 0 & -4 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 1 & 0 & -4/5 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3/5 \\ 0 & 1 & 0 & -4/5 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
The solution is
$$\begin{cases} x_1 = 3/5 \\ x_2 = -4/5. & \text{As a vector, the solution is } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3/5 \\ -4/5 \\ 1 \end{bmatrix}.$$

Exercise 6. Let $A = \begin{bmatrix} -3 & -4 \\ 12 & 16 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Show that the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for some choices of \mathbf{b} , and describe the set of all \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ does have a solution.

ANS: The augmented matrix for $A\mathbf{x} = \mathbf{b}$ is $\begin{bmatrix} -3 & -4 & b_1 \\ 12 & 16 & b_2 \end{bmatrix}$, which is row equivalent to $\begin{bmatrix} -3 & -4 & b_1 \\ 0 & 0 & b_2 + 4b_1 \end{bmatrix}$. This shows that the equation $A\mathbf{x} = \mathbf{b}$ is not consistent when $b_2 + 4b_1 \neq 0$

The set of **b** for which the equation is consistent is a line through the origin - the set of all points (b_1, b_2) satisfying $b_2 = -4b_1$.

Exercise 7. Let
$$\mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}$, and $\mathbf{z} = \begin{bmatrix} -4 \\ -6 \\ 7 \end{bmatrix}$.

It can be shown that $2\mathbf{x} - 3\mathbf{y} - \mathbf{z} = \mathbf{0}$. Use this fact (and no row operations) to find x_1 and x_2 that satisfy the equation

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -4 \\ -6 \\ 7 \end{bmatrix}$$

ANS: As $2\mathbf{x} - 3\mathbf{y} - \mathbf{z} = \mathbf{0}$, we know $2\mathbf{x} - 3\mathbf{y} = \mathbf{z}$, which is the following vector equation

$$2\begin{bmatrix}1\\3\\5\end{bmatrix}-3\begin{bmatrix}2\\4\\1\end{bmatrix}=\begin{bmatrix}-4\\-6\\7\end{bmatrix}$$

This is equivalent to the matrix equation

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} -4 \\ -6 \\ 7 \end{bmatrix}$$

Thus $egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} 2 \ -3 \end{bmatrix}.$