Section 1.4 The Matrix Equation $A \boldsymbol{x}=b$

Definition (Product of a Matrix and a Vector).

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, and if \mathbf{x} is in \mathbb{R}^{n}, then the product of A and \mathbf{x}, denoted by $A \mathbf{x}$, is the linear combination of the columns of A using the corresponding entries in x as weights; that is,

$$
A \mathbf{x}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

Remark: $A \mathbf{x}$ is defined only if the number of columns of A equals the number of entries in \mathbf{x}.

Example 1. (a) Use the definition to compute

$$
=1 \cdot\left(\begin{array}{c}
6 \\
-4 \\
7
\end{array}\right]+(-3)\left[\begin{array}{c}
5 \\
-3 \\
6
\end{array}\right]=\left[\begin{array}{c}
6 \\
-4 \\
7
\end{array}\right]+\left[\begin{array}{c}
-15 \\
9 \\
-18
\end{array}\right]=\left[\begin{array}{c}
-9 \\
5 \\
-11
\end{array}\right]
$$

Row-Vector Rule for Computing $A \mathbf{x}$

If the product $A \mathbf{x}$ is defined, then the i th entry in $A \mathbf{x}$ is the sum of the products of corresponding entries from row i of A and from the vector \mathbf{x}.

Example 1. (b) Use the Row-Vector Rule to compute the product in part (a).

$$
A \vec{x}=\left[\begin{array}{cc}
6 & 5 \\
-4 & -3 \\
7 & 6
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{l}
6 \times 1+5 \times(-3) \\
(-4) \times(+(-3) \times(-3) \\
7 \times 1+6 \times(-3)
\end{array}\right]=\left[\begin{array}{c}
-9 \\
5 \\
-11
\end{array}\right]
$$

Definition (Matrix Equation).
An equation in the form of $A \mathbf{x}=\mathbf{b}$ is called a matrix equation.
Theorem 3 (Equivalence Between Matrix Equation and Vector Equation)
If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, and if \mathbf{b} is in \mathbb{R}^{m}, the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right]
$$

Example 2. Write the system first as a vector equation and then as a matrix equation.

$$
\begin{aligned}
8 x_{1}-x_{2} & =4 \\
5 x_{1}+4 x_{2} & =1 \\
x_{1}-3 x_{2} & =2
\end{aligned}
$$

ANS: Vector eqn:

$$
x_{1}\left[\begin{array}{l}
8 \\
5 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{r}
-1 \\
4 \\
-3
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

$$
\text { Matrix eqn: }\left[\begin{array}{cc}
8 & -1 \\
5 & 4 \\
1 & -3
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

Existence of Solutions
The definition of $A \mathbf{x}$ leads directly to the following useful fact:
The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Theorem 4
Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

1. For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
2. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
3. The columns of A span \mathbb{R}^{m}.
4. A has a pivot position in every row.

Warning: Theorem 4 is about a coefficient matrix, not an augmented matrix. If an augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$ has a pivot position in every row, then the equation $A \mathbf{x}=\mathbf{b}$ may or may not be consistent.
Eg: $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{1}\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, the augmented matrix $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$. has a pivot position in every row. But the system has no solution.
Example 3. Let $\mathbf{u}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ and $A=\left[\begin{array}{rr}3 & -5 \\ -2 & 6 \\ 1 & 1\end{array}\right]$. Is \mathbf{u} in the plane in \mathbb{R}^{3} spanned by the columns of A ? (See) Why or why not?

ANS: The vector \vec{n} is in the plane spanned by the columns of A if and only if \vec{n} is a linear combination of the columns of A.

This happens if and only if $\vec{A} \vec{x}=\vec{u}$ has a solution (See the box above Thu 4).

The corresponding angmefted matrix is

$$
\left\{\begin{array}{cc|cc|c}
3 & -5 & 0 \\
-2 & 6 & 1 \\
1 & 1 & 1
\end{array}\right\} \sim\left(\begin{array}{cc}
1 & 1 \\
-2 & 6 \\
3 & -5
\end{array}\right)
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cc|c}
1 & 1 & 1 \\
0 & 8 & 3 \\
0 & -8 & -3
\end{array}\right] \sim\left[\begin{array}{cc|c}
(1) & 1 & 1 \\
0 & (8) & 3 \\
0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{ll|l}
1 & 1 & 1 \\
0 & 1 & \frac{3}{8} \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 0 & \frac{5}{8} \\
0 & (1) & \frac{3}{8} \\
0 & 0 & 0
\end{array}\right] \Rightarrow \begin{cases}x_{1} & =\frac{5}{8} \\
x_{2}=\frac{3}{8} \\
0=0\end{cases}
\end{aligned}
$$

Thus the equation $A \vec{x}=\vec{u}$ has a (unique) solution.
So \vec{u} is in the plane spanned by the columns of A.
If we multiply A by the vector $\vec{x}=\left[\begin{array}{c}\frac{5}{8} \\ \frac{3}{8}\end{array}\right]$
Writes $\vec{\mu}$ as a linear combination of the columns of A.i.e.

$$
\vec{n}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\frac{5}{8}\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]+\frac{3}{8}\left[\begin{array}{c}
-5 \\
6 \\
1
\end{array}\right]
$$

Example 4. Let $\mathbf{v}_{1}=\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}0 \\ -1 \\ 3\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}2 \\ -1 \\ -3\end{array}\right]$. Does $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \operatorname{span} \mathbb{R}^{3}$?

Theorem 4
Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

1. For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
2. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
3. The columns of A span \mathbb{R}^{m}.
(4.) A has a pivot position in every row.

ANs: By The 4
$\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\mathbb{R}^{3} \Longleftrightarrow A=\left[\begin{array}{lll}\vec{v} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]$ has a pivot position in each row.

Let $A=\left[\begin{array}{ccc}0 & 0 & 2 \\ 0 & -1 & -1 \\ -1 & 3 & -3\end{array}\right] \sim\left[\begin{array}{ccc}-1 & 3 & -3 \\ 0 & -1 & -1 \\ 0 & 0 & \not{ }^{\prime}\end{array}\right]$

$$
\sim\left[\begin{array}{ccc}
-1 & 3 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & (1) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus A has a pivot position in each row. So $\operatorname{span}\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}=\mathbb{R}^{3}$.
Properties of the Matrix-Vector Product $A \mathbf{x}$
Theorem 5
If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:
a. $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$;
b. $A(c \mathbf{u})=c(A \mathbf{u})$.

The following three questions are left as exercises. I will provide the complete notes for solving them after the lecture.

Exercise 5. Given A and \mathbf{b}, write the augmented matrix for the linear system that corresponds to the matrix equation $A \mathbf{x}=\mathbf{b}$. Then solve the system and write the solution as a vector.

$$
A=\left[\begin{array}{rrr}
1 & 2 & 1 \\
-3 & -1 & 2 \\
0 & 5 & 3
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]
$$

ANS: To solve $A \mathbf{x}=\mathbf{b}$, row reduce the augmented matrix $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}\end{array}\right]$ for the corresponding linear system:

$$
\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
-3 & -1 & 2 & 1 \\
0 & 5 & 3 & -1
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
0 & 5 & 5 & 1 \\
0 & 5 & 3 & -1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 5 & 5 & 1 \\
0 & 0 & -2 & -2
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 5 & 5 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

$$
\sim\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
0 & 5 & 0 & -4 \\
0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 1 & 0 & -4 / 5 \\
0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 3 / 5 \\
0 & 1 & 0 & -4 / 5 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

The solution is $\left\{\begin{array}{l}x_{1}=3 / 5 \\ x_{2}=-4 / 5 . \\ x_{3}=1\end{array}\right.$ As a vector, the solution is $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}3 / 5 \\ -4 / 5 \\ 1\end{array}\right]$.

Exercise 6. Let $A=\left[\begin{array}{cc}-3 & -4 \\ 12 & 16\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. Show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for some choices of \mathbf{b}, and describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does have a solution.
ANS: The augmented matrix for $A \mathbf{x}=\mathbf{b}$ is $\left[\begin{array}{ccc}-3 & -4 & b_{1} \\ 12 & 16 & b_{2}\end{array}\right]$, which is row equivalent to $\left[\begin{array}{ccc}-3 & -4 & b_{1} \\ 0 & 0 & b_{2}+4 b_{1}\end{array}\right]$. This shows that the equation $A \mathbf{x}=\mathbf{b}$ is not consistent when $b_{2}+4 b_{1} \neq 0$

The set of \mathbf{b} for which the equation is consistent is a line through the origin - the set of all points $\left(b_{1}, b_{2}\right)$ satisfying $b_{2}=-4 b_{1}$.

Exercise 7. Let $\mathbf{x}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right], \mathbf{y}=\left[\begin{array}{l}2 \\ 4 \\ 1\end{array}\right]$, and $\mathbf{z}=\left[\begin{array}{c}-4 \\ -6 \\ 7\end{array}\right]$.
It can be shown that $2 \mathbf{x}-3 \mathbf{y}-\mathbf{z}=\mathbf{0}$. Use this fact (and no row operations) to find x_{1} and x_{2} that satisfy the equation

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-6 \\
7
\end{array}\right]
$$

ANS: As $2 \mathbf{x}-3 \mathbf{y}-\mathbf{z}=\mathbf{0}$, we know $2 \mathbf{x}-3 \mathbf{y}=\mathbf{z}$, which is the following vector equation

$$
2\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]-3\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-6 \\
7
\end{array}\right]
$$

This is equivalent to the matrix equation

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-6 \\
7
\end{array}\right]
$$

Thus $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{r}2 \\ -3\end{array}\right]$.

